Pigeonhole Sort
Pigeonhole sorting is a sorting algorithm that is suitable for sorting lists of elements where the number of elements and the number of possible key values are approximately the same.
It requires O(n + Range) time where n is number of elements in input array and ‘Range’ is number of possible values in array.
Working of Algorithm :
-
Find minimum and maximum values in array. Let the minimum and maximum values be ‘min’ and ‘max’ respectively. Also find range as ‘max-min+1’.
-
Set up an array of initially empty “pigeonholes” the same size as of the range.
-
Visit each element of the array and then put each element in its pigeonhole. An element arr[i] is put in hole at index arr[i] – min.
-
Start the loop all over the pigeonhole array in order and put the elements from non- empty holes back into the original array.
Comparison with Counting Sort :
It is similar to counting sort, but differs in that it “moves items twice: once to the bucket array and again to the final destination “.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
/* C program to implement Pigeonhole Sort */
#include <bits/stdc++.h>
using namespace std;
/* Sorts the array using pigeonhole algorithm */
void pigeonholeSort(int arr[], int n)
{
// Find minimum and maximum values in arr[]
int min = arr[0], max = arr[0];
for (int i = 1; i < n; i++)
{
if (arr[i] < min)
min = arr[i];
if (arr[i] > max)
max = arr[i];
}
int range = max - min + 1; // Find range
// Create an array of vectors. Size of array
// range. Each vector represents a hole that
// is going to contain matching elements.
vector<int> holes[range];
// Traverse through input array and put every
// element in its respective hole
for (int i = 0; i < n; i++)
holes[arr[i]-min].push_back(arr[i]);
// Traverse through all holes one by one. For
// every hole, take its elements and put in
// array.
int index = 0; // index in sorted array
for (int i = 0; i < range; i++)
{
vector<int>::iterator it;
for (it = holes[i].begin(); it != holes[i].end(); ++it)
arr[index++] = *it;
}
}
// Driver program to test the above function
int main()
{
int arr[] = {8, 3, 2, 7, 4, 6, 8};
int n = sizeof(arr)/sizeof(arr[0]);
pigeonholeSort(arr, n);
printf("Sorted order is : ");
for (int i = 0; i < n; i++)
printf("%d ", arr[i]);
return 0;
}
Output:
1
Sorted order is : 2 3 4 6 7 8 8
Pigeonhole sort has limited use as requirements are rarely met. For arrays where range is much larger than n, bucket sort is a generalization that is more efficient in space and time.